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Abstract

This paper outlines the case for believing that we will have superhuman artificial
intelligence within the first third of the next century. It looks at different estimates of the
processing power of the human brain; how long it will take until computer hardware
achieve a similar performance; ways of creating the software through bottom-up
approaches like the one used by biological brains; how difficult it will be for
neuroscience figure out enough about how brains work to make this approach work;
and how fast we can expect superintelligence to be developed once there is human-level
artificial intelligence.

 

Definition of "superintelligence"

By a "superintelligence" we mean an intellect that is much smarter than the best human
brains in practically every field, including scientific creativity, general wisdom and
social skills. This definition leaves open how the superintelligence is implemented: it
could be a digital computer, an ensemble of networked computers, cultured cortical
tissue or what have you. It also leaves open whether the superintelligence is conscious
and has subjective experiences.

Entities such as companies or the scientific community are not superintelligences
according to this definition. Although they can perform a number of tasks of which no
individual human is capable, they are not intellects and there are many fields in which
they perform much worse than a human brain - for example, you can't have real-time
conversation with "the scientific community".

 

Moore's law and present supercomputers
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Moore's law <A> states that processor speed doubles every eighteen months. The
doubling time used to be two years, but that changed about fifteen years ago. The most
recent data points indicate a doubling time as short as twelve months. This would mean
that there will be a thousand-fold increase in computational power in ten years. Moore's
law is what chip manufacturers rely on when they decide what sort of chip to develop
in order to remain competitive.

If we estimate the computational capacity of the human brain, and allow ourselves to
extrapolate available processor speed according to Moore's law (whether doing so is
permissible will be discussed shortly), we can calculate how long it will take before
computers have sufficient raw power to match a human intellect.

The fastest supercomputer today (December 1997) is 1.5 Terraops, 1.5*10^12 ops.
There is a project that aims to extract 10 Terraops from the Internet by having a
hundred thousand volunteers install a screen saver on their computers that would allow
a central computer to delegate some computational tasks to them. This (so-called
metacomputing) approach works best for tasks that are very easy to parallelize, such as
doing an exhaustive journey though search space in attempting to break a code. With
better bandwidth connections in the future (e.g. optical fibers), large-scale
metacomputing will work even better than today. Brain simulations should by their
nature be relatively easy to parallelize, so maybe huge brain simulations distributed
over the Internet could be a feasible alternative in the future. We shall however
disregard this possibility for present purposes and regard the 1.5 Tops machine as the
best we can do today. The potential of metacomputing can be factored into our
prognosis by viewing it as an additional reason to believe that available computing
power will continue to grow as Moore's law predicts.

Even without any technology improvement we can do somewhat better than, for
example by doubling the number of chips that we put in the box. A 3 Tops computer has
been ordered by the US government to be used in testing and developing the nation's
stock pile of nuclear weapons. However, considering that the cost of this machine is
$94,000,000, it is clear that even massive extra funding would only yield a very modest
increase in computing power in the short term.

How good grounds are there to believe that Moore's law will continue to hold in the
future? It is clear that sooner or later it must fail. There are physical limitations on the
density with which matter can store and process information. The Bekenstein bound
gives an upper limit on the amount of information that can be contained within any
given volume using a given amount of energy. Since space colonization would allow at
most a polynomial (~t^3) expansion rate (assuming expansion rate is bounded by the
speed of light), the exponential increase of available computational power cannot be
continued indefinitely, unless new physics is forthcoming.

In my opinion, Moore's law loses its credibility long before we reach absolute physical
limits. It probably hasn't got much predictive power beyond, say, the next fifteen years.
That is not to say that processor speed will not continue to double every twelve or
eighteen months after 2012; only that we cannot use Moore's law to argue that it will.
Instead, if we want to make predictions beyond that date, we will have to look directly
at what is physically feasible. That will presumably also mean that we have to contend
ourselves with a greater uncertainty interval along the time axis. Physical feasibility
studies tell us, at best, what will happen given that people want it to happen; but even if
we assume that the demand is there, it will still not tell us when it will happen.

In about the year 2007 we will have reached the physical limit of present silicon
technology. Moore's law, however, has survived several technological phase transitions



before, from relays to vacuum tubes to transistors to integrated circuits to Very Large
Scale Integrated circuits (VLSI). There is no reason why present VLSI designs on two-
dimensional silicon wafers should be the last word in chip technology. Several ways to
overcome the limits of the present technology have been proposed and are being
developed.

In the near future, it might for example be possible to use phase shift masks to push the
minimum circuit-line width on a microchip down to as little as 0.13 micrometer, even
while remaining in the optical range with the lithographic irradiation. Leaving the
optical range, we could use x-rays or at least extreme ultraviolet ("EUV", also called
"soft x-rays") to attain still finer precision. Failing this, it should be feasible to use
electron bean writing, although this production method would be slow and hence
expensive. A compromise would be to write some of the gates with an electron beam,
especially at bottlenecks where speed is absolutely crucial, and use optical or EUV to
write the other elements of the chip.

We can also increase the power of a chip by using more layers, a technique that has
only recently been mastered, and by making bigger wafers (up to 300 mm should not be
a problem). Drastically bigger chips could be manufactured if there were some error
tolerance. Tolerance to error could be obtained by using evolvable hardware (de Garis
1997).

It is also possible to push the physical limits on how small the transistors can be made
by switching to new materials, such as Gallium Arsenide. Quantum transistors are
presently being developed, promising a major step forward for circuitry where high
switching speed or low energy consumption is essential.

Because of the highly parallel nature of brain-like computations, it should also be
possible to use a highly parallel architecture, in which case it will suffice to produce a
great number of moderately fast processors, and have then have them connected. You
could either put them in the same box which would give you a bus-based
multiprocessor (which are quite popular today) or you could link them up to a high-
bandwidth local-area network (an option that will be increasingly attractive as the
performance of standard networking technology improves). <B>

These are all things that are being developed today. Massive funding is pumped into
these technologies <C>. Although the difficulties can appear staggering to a person
working in the field, who is constantly focused on the immediate problems, it is fair to
say that there is widespread optimism among the experts that the prospects are good
that computers will continue to grow more powerful for the foreseeable future.

Notes

<A> It is not clear what, exactly, Moore's law says. The law derives its name from Gordon Moore, co-
founder of Intel Corp., who back in 1965 noted that microchips were doubling in circuit density every year.
In 1975 he made the prediction that from then on, the doubling time would be two years. The actual
doubling time has fluctuated a bit, starting at one year, going up to two years, and is now back to
approximately one year again. So one ambiguity in citing Moore's law is that it is unclear whether the time
constant is supposed to be one year, two years, or whether it is supposed to be whatever the most recent data
points indicate. A second ambiguity resides in the fact that the initial statement was phrased in terms of the
number on transistors that could be fitted into an area unit, rather than in terms of the speed of the resulting
chip. Until now, this distinction hasn't mattered much, because circuitry density and speed have been highly
correlated. When we look to the future, however, it is possible that we will achieve increased computing
power by other means than by making transistors smaller. It therefore makes sense to reformulate Moore's
law into a statement asserting an exponential growth in computing power (per inflation-adjusted dollar)
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rather than chip density. It is better to apply the label "Moore's law" to this slightly modified hypothesis
than to invent a new term for what is basically the same idea.

<B> In the longer term, we also have to consider molecular nanotechnology and maybe quantum
computing.

<C> It nowadays takes about 400 engineers to produce a new chip. A modern chip factory may cost over $2
billion. About $20 to $30 billion is spent on microchip R&D every years. These figures have grown over the
years, so it should be pointed out that one factor that could slow the pace of development would be if
funding begins to level out, as it sooner or later will.

 

Hardware requirements

The human brain contains about 10^11 neurons. Each neuron has about 5*10^3
synapses, and signals are transmitted along these synapses at an average frequency of
about 10^2 Hz. Each signal contains, say, 5 bits. This equals 10^17 ops.<A>

The true value cannot be much higher than this, but it might be much lower. There
seems to be great redundancy in the brain; synchronous firing of large pools of neurons
is often required if the signal is not to drown in the general noise. An alternative way of
calculating the total capacity is to consider some part of the cortex that performs a
function that we know how to replicate on digital computers. We calculate the average
computer-equivalent processing capacity of a single neuron in that cortical area, and
multiply this value with the number of neurons in the brain. Hans Moravec has done
this calculation using data about the human retina (Moravec 1997) and compared it
with known computational demands of edge extraction in robot vision. He got the value
10^14 ops for the human brain as a whole. That is three orders of magnitude less than
the upper bound calculated by assuming that there is no redundancy.

It is hard to see any reason to suppose that the redundancy in the retina should be
greater than in the cortex. If anything, one would rather expect it to be the other way
around, since edge extraction is more low-level task than higher cognitive processes
and therefore presumably more optimized (by evolution and individual learning).

If we need 100 Tops to simulate the human brain then the required computational
power will be reached sometime between 2004 and 2008, depending on whether we
assume a doubling time of 12 or 18 months. This would be the best experimental
supercomputers in the world, not necessarily the computers available to AI researchers.
Depending on how much funding is forthcoming, it might take up to an additional
decade before researchers experimenting with general artificial intelligence have access
to machines with this capacity.

This is if we take the retina simulation as a model. As the present, however, not enough
is known about the neocortex to allow us to simulate it in such an optimized way. But
the knowledge might be available by 2004 to 2008 (as we shall see in the next section).
What is required, if we are to get human-level AI with hardware power at this lower
bound, is the ability to simulate 1000-neuron aggregates in a highly efficient way.

The extreme alternative, which is what we assumed in the derivation of the upper
bound, is to simulate each neuron individually. The number of clock cycles that
neuroscientists can expend simulating the processes of a single neuron knows of no
limits, but that is because their aim is to model the detailed chemical and
electrodynamic processes in the nerve cell rather than to just do the minimal amount of
computation necessary to replicate those features of its response function which are
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relevant for the total performance of the neural net. It is not known how much of the
detail that is contingent and inessential and how much needs to be preserved in order
for the simulation to replicate the performance of the whole. It seems like a good bet
though, at least to the author, that the nodes could be strongly simplified and replaced
with simple standardized elements. It appears perfectly feasible to have an intelligent
neural network with any of a large variety of neuronal output functions and time delays.

It does look plausible, however, that by the time when we know how to simulate an
idealized neuron and know enough about the brain's synaptic structure that we can put
the artificial neurons together in a way that functionally mirrors how it is done in the
brain, then we will also be able to replace whole 1000-neuron modules with something
that requires less computational power to simulate than it does to simulate all the
neuron in the module individually. We might well get all the way down to a mere 1000
instructions per neuron and second, as is implied by Moravec's estimate (10^14 ops /
10^11 neurons = 1000 operations per second and neuron). But unless we can build
these modules without first building a whole brain then this optimization will only be
possible after we have already developed human-equivalent artificial intelligence.

If we assume the upper bound on the computational power needed to simulate the
human brain, i.e. if we assume enough power to simulate each neuron individually
(10^17 ops), then Moore's law says that we will have to wait until about 2015 or 2024
(for doubling times of 12 and 18 months, respectively) before supercomputers with the
requisite performance are at hand. But if by then we know how to do the simulation on
the level of individual neurons, we will presumably also have figured out how to make
at least some optimizations, so we could probably adjust these upper bounds a bit
downwards.

So far I have been talking only of processor speed, but computers need a great deal of
memory too if they are to replicate the brain's performance. Throughout the history of
computers, the ratio between memory and speed has remained more or less constant at
about 1 byte/ops. Since a signal is transmitted along a synapse, on average, with a
frequency of about 100 Hz and since its memory capacity is probably less than 100
bytes (1 byte looks like a more reasonable estimate), it seems that speed rather than
memory would be the bottleneck in brain simulations on the neuronal level. (If we
instead assume that we can achieve a thousand-fold leverage in our simulation speed as
assumed in Moravec's estimate, then that would bring the requirement of speed down,
perhaps, one order of magnitude below the memory requirement. But if we can
optimize away three orders of magnitude on speed by simulating 1000-neuron
aggregates, we will probably be able to cut away at least one order of magnitude of the
memory requirement. Thus the difficulty of building enough memory may be
significantly smaller, and is almost certainly not significantly greater, than the difficulty
of building a processor that is fast enough. We can therefore focus on speed as the
critical parameter on the hardware front.)

This paper does not discuss the possibility that quantum phenomena are irreducibly
involved in human cognition. Hameroff and Penrose and others have suggested that
coherent quantum states may exist in the microtubules, and that the brain utilizes these
phenomena to perform high-level cognitive feats. The author's opinion is that this is
implausible. The controversy surrounding this issue won't be entered into here; it will
simply be assumed, throughout this paper, that quantum phenomena are not
functionally relevant to high-level brain modelling.

In conclusion we can say that the hardware capacity for human-equivalent artificial
intelligence will likely exist before the end of the first quater of the next century, and
may be reached as early as 2004. A corresponding capacity should be available to
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leading AI labs within ten years thereafter (or sooner if the potential of human-level AI
and superintelligence is by then better appreciated by funding agencies).

Notes

<A> It is possible to nit-pick on this estimate. For example, there is some evidence that some limited
amount of communication between nerve cells is possible without synaptic transmission. And we have the
regulatory mechanisms consisting neurotransmitters and their sources, receptors and re-uptake channels.
While neurotransmitter balances are crucially important for the proper functioning of the human brain, they
have an insignificant information content compared to the synaptic structure. Perhaps a more serious point
is that that neurons often have rather complex time-integration properties (Koch 1997). Whether a specific
set of synaptic inputs result in the firing of a neuron depends on their exact timing. The authors' opinion is
that except possibly for a small number of special applications such as auditory stereo perception, the
temporal properties of the neurons can easily be accommodated with a time resolution of the simulation on
the order of 1 ms. In an unoptimized simulation this would add an order of magnitude to the estimate given
above, where we assumed a temporal resolution of 10 ms, corresponding to an average firing rate of 100
Hz. However, the other values on which the estimate was based appear to be too high rather than too low ,
so we should not change the estimate much to allow for possible fine-grained time-integration effects in a
neuron's dendritic tree. (Note that even if we were to adjust our estimate upward by an order of magnitude,
this would merely add three to five years to the predicted upper bound on when human-equivalent hardware
arrives. The lower bound, which is based on Moravec's estimate, would remain unchanged.)

 

Software via the bottom-up approach

Superintelligence requires software as well as hardware. There are several approaches
to the software problem, varying in the amount of top-down direction they require. At
the one extreme we have systems like CYC which is a very large encyclopedia-like
knowledge-base and inference-engine. It has been spoon-fed facts, rules of thumb and
heuristics for over a decade by a team of human knowledge enterers. While systems
like CYC might be good for certain practical tasks, this hardly seems like an approach
that will convince AI-skeptics that superintelligence might well happen in the
foreseeable future. We have to look at paradigms that require less human input, ones
that make more use of bottom-up methods.

Given sufficient hardware and the right sort of programming, we could make the
machines learn in the same way a child does, i.e. by interacting with human adults and
other objects in the environment. The learning mechanisms used by the brain are
currently not completely understood. Artificial neural networks in real-world
applications today are usually trained through some variant of the Backpropagation
algorithm (which is known to be biologically unrealistic). The Backpropagation
algorithm works fine for smallish networks (of up to a few thousand neurons) but it
doesn't scale well. The time it takes to train a network tends to increase dramatically
with the number of neurons it contains. Another limitation of backpropagation is that it
is a form of supervised learning, requiring that signed error terms for each output
neuron are specified during learning. It's not clear how such detailed performance
feedback on the level of individual neurons could be provided in real-world situations
except for certain well-defined specialized tasks.

A biologically more realistic learning mode is the Hebbian algorithm. Hebbian learning
is unsupervised and it might also have better scaling properties than Backpropagation.
However, it has yet to be explained how Hebbian learning by itself could produce all
the forms of learning and adaptation of which the human brain is capable (such the
storage of structured representation in long-term memory - Bostrom 1996). Presumably,
Hebb's rule would at least need to be supplemented with reward-induced learning
(Morillo 1992) and maybe with other learning modes that are yet to be discovered. It
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does seems plausible, though, to assume that only a very limited set of different
learning rules (maybe as few as two or three) are operating in the human brain. And we
are not very far from knowing what these rules are.

Creating superintelligence through imitating the functioning of the human brain
requires two more things in addition to appropriate learning rules (and sufficiently
powerful hardware): it requires having an adequate initial architecture and providing a
rich flux of sensory input.

The latter prerequisite is easily provided even with present technology. Using video
cameras, microphones and tactile sensors, it is possible to ensure a steady flow of real-
world information to the artificial neural network. An interactive element could be
arranged by connecting the system to robot limbs and a speaker.

Developing an adequate initial network structure is a more serious problem. It might
turn out to be necessary to do a considerable amount of hand-coding in order to get the
cortical architecture right. In biological organisms, the brain does not start out at birth
as a homogenous tabula rasa; it has an initial structure that is coded genetically.
Neuroscience cannot, at its present stage, say exactly what this structure is or how
much of it needs be preserved in a simulation that is eventually to match the cognitive
competencies of a human adult. One way for it to be unexpectedly difficult to achieve
human-level AI through the neural network approach would be if it turned out that the
human brain relies on a colossal amount of genetic hardwiring, so that each cognitive
function depends on a unique and hopelessly complicated inborn architecture, acquired
over aeons in the evolutionary learning process of our species.

Is this the case? A number of considerations that suggest otherwise. We have to contend
ourselves with a very brief review here. For a more comprehensive discussion, the
reader may consult Phillips & Singer (1997).

Quartz & Sejnowski (1997) argue from recent neurobiological data that the developing
human cortex is largely free of domain-specific structures. The representational
properties of the specialized circuits that we find in the mature cortex are not generally
genetically prespecified. Rather, they are developed through interaction with the
problem domains on which the circuits operate. There are genetically coded tendencies
for certain brain areas to specialize on certain tasks (for example primary visual
processing is usually performed in the primary visual cortex) but this does not mean
that other cortical areas couldn't have learnt to perform the same function. In fact, the
human neocortex seems to start out as a fairly flexible and general-purpose mechanism;
specific modules arise later through self-organizing and through interacting with the
environment.

Strongly supporting this view is the fact that cortical lesions, even sizeable ones, can
often be compensated for if they occur at an early age. Other cortical areas take over the
functions that would normally have been developed in the destroyed region. In one
study, sensitivity to visual features was developed in the auditory cortex of neonatal
ferrets, after that region's normal auditory input channel had been replaced by visual
projections (Sur et al. 1988). Similarly, it has been shown that the visual cortex can take
over functions normally performed by the somatosensory cortex (Schlaggar & O'Leary
1991). A recent experiment (Cohen et al. 1997) showed that people who have been
blind from an early age can use their visual cortex to process tactile stimulation when
reading Braille.

There are some more primitive regions of the brain whose functions cannot be taken
over by any other area. For example, people who have their hippocampus removed,



lose their ability to learn new episodic or semantic facts. But the neocortex tends to be
highly plastic and that is where most of the high-level processing is executed that
makes us intellectually superior to other animals. (It would be interesting to examine in
more detail to what extent this holds true for all of neocortex. Are there small
neocortical regions such that, if excised at birth, the subject will never obtain certain
high-level competencies, not even to a limited degree?)

Another consideration that seems to indicate that innate architectural differentiation
plays a relatively small part in accounting for the performance of the mature brain is the
that neocortical architecture, especially in infants, is remarkably homogeneous over
different cortical regions and even over different species:

Laminations and vertical connections between lamina are hallmarks of all
cortical systems, the morphological and physiological characteristics of
cortical neurons are equivalent in different species, as are the kinds of
synaptic interactions involving cortical neurons. This similarity in the
organization of the cerebral cortex extends even to the specific details of
cortical circuitry. (White 1989, p. 179).

One might object that at this point that cetaceans have much bigger corticies than
humans and yet they don't have human-level abstract understanding and language <A>.
A large cortex, apparently, is not sufficient for human intelligence. However, one can
easily imagine that some very simple difference between human and cetacean brains
can account for why we have abstract language and understanding that they lack. It
could be something as trivial as that our cortex is provided with a low-level "drive" to
learn about abstract relationships whereas dolphins and whales are programmed not to
care about or pay much attention to such things (which might be totally irrelevant to
them in their natural environment). More likely, there are some structural developments
in the human cortex that other animals lack and that are necessary for advanced abstract
thinking. But these uniquely human developments may well be the result of relatively
simple changes in just a few basic parameters. They do not require a large amount of
genetic hardwiring. Indeed, given that brain evolution that allowed Homo Sapiens to
intellectually outclass other animals took place under a relatively brief period of time,
evolution cannot have embedded very much content-specific information in these
additional cortical structures that give us our intellectual edge over our humanoid or
ape-like ancestors.

These considerations (especially the one of cortical plasticity) suggest that the amount
of neuroscientific information needed for the bottom-up approach to succeed may be
very limited. (Notice that they do not argue against the modularization of adult human
brains. They only indicate that the greatest part of the information that goes into the
modularization results from self-organization and perceptual input rather than from an
immensely complicated genetic look-up table.)

Further advances in neuroscience are probably needed before we can construct a
human-level (or even higher animal-level) artificial intelligence by means of this
radically bottom-up approach. While it is true that neuroscience has advanced very
rapidly in recent years, it is difficult to estimate how long it will take before enough is
known about the brain's neuronal architecture and its learning algorithms to make it
possible to replicate these in a computer of sufficient computational power. A wild
guess: something like fifteen years. This is not a prediction about how far we are from a
complete understanding of all important phenomena in the brain. The estimate refers to
the time when we might be expected to know enough about the basic principles of how
the brain works to be able to implement these computational paradigms on a computer,
without necessarily modelling the brain in any biologically realistic way.



The estimate might seem to some to underestimate the difficulties, and perhaps it does.
But consider how much has happened in the past fifteen years. The discipline of
computational neuroscience did hardly even exist back in 1982. And future progress
will occur not only because research with today's instrumentation will continue to
produce illuminating findings, but also because new experimental tools and techniques
become available. Large-scale multi-electrode recordings should be feasible within the
near future. Neuro/chip interfaces are in development. More powerful hardware is
being made available to neuroscientists to do computation-intensive simulations.
Neuropharmacologists design drugs with higher specificity, allowing researches to
selectively target given receptor subtypes. Present scanning techniques are improved
and new ones are under development. The list could be continued. All these innovations
will give neuroscientists very powerful new tools that will facilitate their research.

This section has discussed the software problem. It was argued that it can be solved
through a bottom-up approach by using present equipment to supply the input and
output channels, and by continuing to study the human brain in order to find out about
what learning algorithm it uses and about the initial neuronal structure in new-born
infants. Considering how large strides computational neuroscience has taken in the last
decade, and the new experimental instrumentation that is under development, it seems
reasonable to suppose that the required neuroscientific knowledge might be obtained in
perhaps fifteen years from now, i.e. by year 2012.

Notes

<A> That dolphins don't have abstract language was recently established in a very elegant experiment. A
pool is divided into two halves by a net. Dolphin A is released into one end of the pool where there is a
mechanism. After a while, the dolphin figures out how to operate the mechanism which causes dead fish to
be released into both ends of the pool. Then A is transferred to the other end of the pool and a dolphin B is
released into the end of the pool that has the mechanism. The idea is that if the dolphins had a language,
then A would tell B to operate the mechanism. However, it was found that the average time for B to operate
the mechanism was the same as for A.

 

Why the past failure of AI is no argument against its future success

In the seventies and eighties the AI field suffered some stagnation as the exaggerated
expectations from the early heydays failed to materialize and progress nearly ground to
a halt. The lesson to draw from this episode is not that strong AI is dead and that
superintelligent machines will never be built. It shows that AI is more difficult than
some of the early pioneers might have thought, but it goes no way towards showing that
AI will forever remain unfeasible.

In retrospect we know that the AI project couldn't possibly have succeeded at that stage.
The hardware was simply not powerful enough. It seems that at least about 100 Tops is
required for human-like performance, and possibly as much as 10^17 ops is needed.
The computers in the seventies had a computing power comparable to that of insects.
They also achieved approximately insect-level intelligence. Now, on the other hand, we
can foresee the arrival of human-equivalent hardware, so the cause of AI's past failure
will then no longer be present.

There is also an explanation for the relative absence even of noticeable progress during
this period. As Hans Moravec points out:

[F]or several decades the computing power found in advanced Artificial
Intelligence and Robotics systems has been stuck at insect brain power of 1



MIPS. While computer power per dollar fell [should be: rose] rapidly
during this period, the money available fell just as fast. The earliest days of
AI, in the mid 1960s, were fuelled by lavish post-Sputnik defence funding,
which gave access to $10,000,000 supercomputers of the time. In the post
Vietnam war days of the 1970s, funding declined and only $1,000,000
machines were available. By the early 1980s, AI research had to settle for
$100,000 minicomputers. In the late 1980s, the available machines were
$10,000 workstations. By the 1990s, much work was done on personal
computers costing only a few thousand dollars. Since then AI and robot
brain power has risen with improvements in computer efficiency. By 1993
personal computers provided 10 MIPS, by 1995 it was 30 MIPS, and in
1997 it is over 100 MIPS. Suddenly machines are reading text, recognizing
speech, and robots are driving themselves cross country. (Moravec 1997)

In general, there seems to be a new-found sense of optimism and excitement among
people working in AI, especially among those taking a bottom-up approach, such as
researchers in genetic algorithms, neuromorphic engineering and in neural networks
hardware implementations. Many experts who have been around, though, are wary not
again to underestimate the difficulties ahead.

 

Once there is human-level AI there will soon be superintelligence

Once artificial intelligence reaches human level, there will be a positive feedback loop
that will give the development a further boost. AIs would help constructing better AIs,
which in turn would help building better AIs, and so forth.

Even if no further software development took place and the AIs did not accumulate new
skills through self-learning, the AIs would still get smarter if processor speed continued
to increase. If after 18 months the hardware were upgraded to double the speed, we
would have an AI that could think twice as fast as its original implementation. After a
few more doublings this would directly lead to what has been called "weak
superintelligence", i.e. an intellect that has about the same abilities as a human brain but
is much faster.

Also, the marginal utility of improvements in AI when AI reaches human-level would
also seem to skyrocket, causing funding to increase. We can therefore make the
prediction that once there is human-level artificial intelligence then it will not be long
before superintelligence is technologically feasible.

A further point can be made in support of this prediction. In contrast to what's possible
for biological intellects, it might be possible to copy skills or cognitive modules from
one artificial intellect to another. If one AI has achieved eminence in some field, then
subsequent AIs can upload the pioneer's program or synaptic weight-matrix and
immediately achieve the same level of performance. It would not be necessary to again
go through the training process. Whether it will also be possible to copy the best parts
of several AIs and combine them into one will depend on details of implementation and
the degree to which the AIs are modularized in a standardized fashion. But as a general
rule, the intellectual achievements of artificial intellects are additive in a way that
human achievements are not, or only to a much less degree.

 

The demand for superintelligence
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Given that superintelligence will one day be technologically feasible, will people
choose to develop it? This question can pretty confidently be answered in the
affirmative. Associated with every step along the road to superintelligence are
enormous economic payoffs. The computer industry invests huge sums in the next
generation of hardware and software, and it will continue doing so as long as there is a
competitive pressure and profits to be made. People want better computers and smarter
software, and they want the benefits these machines can help produce. Better medical
drugs; relief for humans from the need to perform boring or dangerous jobs;
entertainment -- there is no end to the list of consumer-benefits. There is also a strong
military motive to develop artificial intelligence. And nowhere on the path is there any
natural stopping point where technofobics could plausibly argue "hither but not
further".

It therefore seems that up to human-equivalence, the driving-forces behind
improvements in AI will easily overpower whatever resistance might be present. When
the question is about human-level or greater intelligence then it is conceivable that there
might be strong political forces opposing further development. Superintelligence might
be seen to pose a threat to the supremacy, and even to the survival, of the human
species. Whether by suitable programming we can arrange the motivation systems of
the superintelligences in such a way as to guarantee perpetual obedience and
subservience, or at least non-harmfulness, to humans is a contentious topic. If future
policy-makers can be sure that AIs would not endanger human interests then the
development of artificial intelligence will continue. If they can't be sure that there
would be no danger, then the development might well continue anyway, either because
people don't regard the gradual displacement of biological humans with machines as
necessarily a bad outcome, or because such strong forces (motivated by short-term
profit, curiosity, ideology, or desire for the capabilities that superintelligences might
bring to its creators) are active that a collective decision to ban new research in this
field can not be reached and successfully implemented.

 

Conclusion

Depending on degree of optimization assumed, human-level intelligence probably
requires between 10^14 and 10^17 ops. It seems quite possible that very advanced
optimization could reduce this figure further, but the entrance level would probably not
be less than about 10^14 ops. If Moore's law continues to hold then the lower bound
will be reached sometime between 2004 and 2008, and the upper bound between 2015
and 2024. The past success of Moore's law gives some inductive reason to believe that
it will hold another ten, fifteen years or so; and this prediction is supported by the fact
that there are many promising new technologies currently under development which
hold great potential to increase procurable computing power. There is no direct reason
to suppose that Moore's law will not hold longer than 15 years. It thus seems likely that
the requisite hardware for human-level artificial intelligence will be assembled in the
first quarter of the next century, possibly within the first few years.

There are several approaches to developing the software. One is to emulate the basic
principles of biological brains. It is not implausible to suppose that these principles will
be well enough known within 15 years for this approach to succeed, given adequate
hardware.

The stagnation of AI during the seventies and eighties does not have much bearing on
the likelihood of AI to succeed in the future since we know that the cause responsible



for the stagnation (namely, that the hardware available to AI researchers was stuck at
about 10^6 ops) is no longer present.

There will be a strong and increasing pressure to improve AI up to human-level. If there
is a way of guaranteeing that superior artificial intellects will never harm human beings
then such intellects will be created. If there is no way to have such a guarantee then
they will probably be created nevertheless.

Go to Nick Bostrom's home page
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Postscript I
(25 October, 1998)

The U.S. Department of Energy has ordered a new supercomputer from IBM, to be
installed in the Lawrence Livermore National Laboratory in the year 2000. It will cost
$85 million and will perform 10 Tops. This development is in accordance with Moore's
law, or possibly slightly more rapid than an extrapolation would have predicted.

Many steps forward that have been taken during the past year. An especially nifty one is
the new chip-making techniques being developed at Irvine Sensors Corporation (ISC).
They have found a way to stack chips directly on top of each other in a way that will
not only save space but, more importantly, allow a larger number of interconnections
between neigboring chips. Since the number of interconnections have been a bottleneck
in neural network hardware implementations, this breakthrough could prove very
important. In principle, it should allow you to have an arbitrarily large cube of neural
network modules with high local connectivity and moderate non-local connectivity.

Postscript II
(28 August, 2000)

Is progress still on schedule? - In fact, things seem to be moving somewhat faster than
expected, at least on the hardware front. (Software progress is more difficult to
quantify.) IBM is currently working on a next-generation supercomputer, Blue Gene,
which will perform over 10^15 ops. This computer, which is designed to tackle the
protein folding problem, is expected to be ready around 2005. It will achieve its
enormous power through massive parallelism rather than through dramatically faster
processors. Considering the increasing emphasis on parallel computing, and the steadily
increasing Internet bandwidth, it becomes important to interpret Moore's law as a
statement about how much computing power can be bought for a given sum of
(inflation adjusted) money. This measure has historically been growing at the same
pace as processor speed or chip density, but the measures may come apart in the future.
It is how much computing power that can be bought for, say, 100 million dollars that is
relevant when we are trying to guess when superintelligence will be developed, rather
than how fast individual processors are.

Postscript III
(30 October, 2005)

The fastest supercomputer today is IBM's Blue Gene/L, which has attained 260 Tops
(2.6*10^14 ops). The Moravec estimate of the human brain's processing power (10^14
ops) has thus now been exceeded.
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The 'Blue Brain' project was launched by the Brain Mind Institute, EPFL, Switzerland
and IBM, USA in May, 2005. It aims to build an accurate software replica of the
neocortical column within 2-3 years. The column will consist of 10,000
morphologically complex neurons with active ionic channels. The neurons will be
interconnected in a 3-dimensional space with 10^7 -10^8 dynamic synapses. This
project will thus use a level of simulation that attempts to capture the functionality of
individual neurons at a very detailed level. The simulation is intended to run in real
time on a computer preforming 22.8*10^12 flops. Simulating the entire brain in real
time at this level of detail (which the researchers indicate as a goal for later stages of
the project) would correspond to circa 2*10^19 ops, five orders of magnitude above the
current supercomputer record. This is two orders of magnitude greater than the estimate
of neural-level simulation given in the original paper above, which assumes a cruder
level of simulation of neurons. If the 'Blue Brain' project succeeds, it will give us hard
evidence of an upper bound on the computing power needed to achieve human
intelligence.

Functional replication of the functionality of early auditory processing (which is quite
well understood) has yielded an estimate that agrees with Moravec's assessment based
on signal processing in the retina (i.e. 10^14 ops for whole-brain equivalent
replication).

No dramatic breakthrough in general artificial intelligence seems to have occurred in
recent years. Neuroscience and neuromorphic engineering are proceeding at a rapid
clip, however. Much of the paper could now be rewritten and updated to take into
account information that has become available in the past 8 years.

Molecular nanotechnology, a technology that in its mature form could enable mind
uploading (an extreme version of the bottom-up method, in which a detailed 3-
dimensional map is constructed of a particular human brain and then emulated in a
computer), has begun to pick up steam, receiving increasing funding and attention. An
upload running on a fast computer would be weakly superintelligent -- it would initially
be functionally identical to the original organic brain, but it could run at a much higher
speed. Once such an upload existed, it might be possible to enhance its architecture to
create strong superintelligence that was not only faster but functionally superior to
human intelligence.

Postscript IV
(12 March, 2008)

I should clarify what I meant when in the abstract I said I would "outline the case for
believing that we will have superhuman artificial intelligence within the first third of
the next [i.e. the this] century". I chose the word "case" deliberately: In particular, by
outlinining "the case for", I did not mean to deny that one could also outline a case
against. In fact, I would all-things-considered assign less than a 50% probability to
superintelligence being developed by 2033. I do think there is great uncertainty about
whether and when it might happen, and that one should take seriously the possibility
that it might happen by then, because of the kinds of consideration outlined in this
paper.

There seems to be somewhat more interest now in artificial general intelligence (AGI)
research than there was a few years ago. However, it appears that as yet no major
breakthrough has occurred.
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